63. Unique Paths II

Dynamic Programming

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];

// update first row and column
for (int i = 0; i < m; i++) {
if (obstacleGrid[i][0] == 1) {
dp[i][0] = 0;
break;
}
dp[i][0] = 1;
}
for (int j = 0; j < n; j++) {
if (obstacleGrid[0][j] == 1) {
dp[0][j] = 0;
break;
}
dp[0][j] = 1;
}

// calculate from (1,1)
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) {
dp[i][j] = 0;
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}

}
}

return dp[m - 1][n - 1];

}
}

Remarks:

  1. Adapted from No. 62.
  2. TC: $O(m\times n)$, SC: $O(m\times n)$.